
Introduction
Root Filesystem Protection
Raspberry Pi and Real-time

Is Raspberry Pi Usable for Industrial and Robotic
Applications?

Pavel Pisa
pisa@cmp.felk.cvut.cz

CC BY-SA

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Control Engineering

PiKRON s.r.o.
ppisa@pikron.com

2015-3-8
InstallFest 2015

Pavel Pisa pisa@cmp.felk.cvut.cz CC BY-SA RPi for Industrial and Robotic Applications

pisa@cmp.felk.cvut.cz
ppisa@pikron.com
pisa@cmp.felk.cvut.cz

Introduction
Root Filesystem Protection
Raspberry Pi and Real-time

Content of Presentation

1 Introduction

2 Root Filesystem Protection
SD-card Reliability
GNU/Linux and Root Filesystem
U-Boot on Raspberry Pi

3 Raspberry Pi and Real-time
Fully Preemptive Kernel
DC Motor Control by RPi
Rapid Prototyping with Matlab/Simulink

Pavel Pisa pisa@cmp.felk.cvut.cz CC BY-SA RPi for Industrial and Robotic Applications

pisa@cmp.felk.cvut.cz

Introduction
Root Filesystem Protection
Raspberry Pi and Real-time

Raspberry Pi Overview

affordable/cheap single board computer developed for
promotion of the teaching computer science
the low cost demand lead to significant compromises

version 1 is based on Broadcom BCM2835 chip based on
ARM1176JZF-S (ARMv6 architecture, insufficient for Debian
armhf port which demands ARMv7-A and VFPv3-D16)
the cheap mobile applications SoC does not include
ETHERNET controller which is added as USB converter
no memory technology devices (MTD) or integrated storage –
uses standard or micro SD-card
CPU performance is not great and VideoCore IV GPU is
proprietary/closed
extension connectors mindlessly (much better on B+ and
version 2)

the Debian compatibility solved by version 2 (BCM2836
quad-core ARM Cortex-A7). Performance enhanced.

Pavel Pisa pisa@cmp.felk.cvut.cz CC BY-SA RPi for Industrial and Robotic Applications

pisa@cmp.felk.cvut.cz

Introduction
Root Filesystem Protection
Raspberry Pi and Real-time

Raspberry Pi Applications

facts

intended for education
provides decent performance for video playback
is really cheap

the last point is important

used for many hobby projects, strong community
used even in commercial solutions due to low cost even that it
is not intended for such use

Pavel Pisa pisa@cmp.felk.cvut.cz CC BY-SA RPi for Industrial and Robotic Applications

pisa@cmp.felk.cvut.cz

Introduction
Root Filesystem Protection
Raspberry Pi and Real-time

Alternatives

Many better alternatives exists for industrial applications.
There are listed few ones

FreeScale i.MX53 – ARM Cortex A8, ETHERNET, CAN,
USB, . . .

FreeScale i.MX6 – ARM Cortex A9

TI AM335x Sitara ARM Cortex-A8 (Beagle Bone black) –
adds quadrature encoder inputs, two real time coprocessor
units (PRU)

Pavel Pisa pisa@cmp.felk.cvut.cz CC BY-SA RPi for Industrial and Robotic Applications

pisa@cmp.felk.cvut.cz

Introduction
Root Filesystem Protection
Raspberry Pi and Real-time

Why We Are Involved in RPi World?

Inquiry to PiKRON company to resolve SD-card failures in
already running industrial application

RPi has been chosen (by price) as probe to collect data from
workshops and send them into cloud infrastructure
the SD-card proves to be main point of failures and correction
required personal assistance on distant plants

RPi is hardware bought by many students and hobbyist

quite often more powerful solution is found for initial dream
multimedia applications and boards are free for experiments
RPi can be bridge to broad world of electronic tinkering, ideas
prototyping and can open eyes people that there is much more
to play with than virtual worlds and clouds

Pavel Pisa pisa@cmp.felk.cvut.cz CC BY-SA RPi for Industrial and Robotic Applications

pisa@cmp.felk.cvut.cz

Introduction
Root Filesystem Protection
Raspberry Pi and Real-time

SD-card Reliability
GNU/Linux and Root Filesystem
U-Boot on Raspberry Pi

Outline

1 Introduction

2 Root Filesystem Protection
SD-card Reliability
GNU/Linux and Root Filesystem
U-Boot on Raspberry Pi

3 Raspberry Pi and Real-time
Fully Preemptive Kernel
DC Motor Control by RPi
Rapid Prototyping with Matlab/Simulink

Pavel Pisa pisa@cmp.felk.cvut.cz CC BY-SA RPi for Industrial and Robotic Applications

pisa@cmp.felk.cvut.cz

Introduction
Root Filesystem Protection
Raspberry Pi and Real-time

SD-card Reliability
GNU/Linux and Root Filesystem
U-Boot on Raspberry Pi

Storage Technologies

Rotating disks

Flash based technologies

Small capacity NOR based devices – still used for BIOSes, used
for firmware, usually only for boot in embedded systems, can
be mapped to CPU memory address space (even serial SPIFI)
NAND based Flash – much larger capacity on same silicon,
sequential access, much more susceptible to errors and wear,
requires wear-leveling management and error correction control

can be achieved solely by software (slow)
by controller integrated into central SoC or controller
by controller integrated into device (SD-card, SSD)

SLC (Single-level cell) × MLC (Multi-level cell – cheaper)
Industrial SLC SD-card 4 GB ≥1000 kč, 16 GB ≥3500 kč, MLC
Industrial 16 GB 900 kč
MLC standard/customer grade Micro SDHC 16 GB 200 kč,
SDXC 64 GB 900 kč

Pavel Pisa pisa@cmp.felk.cvut.cz CC BY-SA RPi for Industrial and Robotic Applications

pisa@cmp.felk.cvut.cz

Introduction
Root Filesystem Protection
Raspberry Pi and Real-time

SD-card Reliability
GNU/Linux and Root Filesystem
U-Boot on Raspberry Pi

Customer Grade SD-cards

MLC (Multi-level cell) – two or three bits per cell

minimum spare blocks to replaced broken ones

single block writes limit can be lower than 1000

thanks to big capacity, wear-leveling and obsolesce of customer
devices (cameras, phones, etc.) the device manufacturer
counts with only few complete overwrites during device lifespan
but if the SD-card is used as a root filesystem then logs and
other data are overwritten quite often – even that chunks are
small an erase blocks are large (megabytes) and even clever
wear-leveling cannot save device

Manufacturers count with typical large capacity devices usage

FAT/exFAT filesystem, video, pictures or film stored and then
read only a few times
time, temperature and reads contribute to cell (dis)charge,
SD-cards could be designed for small (tens?) of reads before
content rewrite

Pavel Pisa pisa@cmp.felk.cvut.cz CC BY-SA RPi for Industrial and Robotic Applications

pisa@cmp.felk.cvut.cz

Introduction
Root Filesystem Protection
Raspberry Pi and Real-time

SD-card Reliability
GNU/Linux and Root Filesystem
U-Boot on Raspberry Pi

Outline

1 Introduction

2 Root Filesystem Protection
SD-card Reliability
GNU/Linux and Root Filesystem
U-Boot on Raspberry Pi

3 Raspberry Pi and Real-time
Fully Preemptive Kernel
DC Motor Control by RPi
Rapid Prototyping with Matlab/Simulink

Pavel Pisa pisa@cmp.felk.cvut.cz CC BY-SA RPi for Industrial and Robotic Applications

pisa@cmp.felk.cvut.cz

Introduction
Root Filesystem Protection
Raspberry Pi and Real-time

SD-card Reliability
GNU/Linux and Root Filesystem
U-Boot on Raspberry Pi

Possible Ways to Lower Write Count

Use noatime, nodiratime or relatime mount options, select
scheduled (ie. anticipatory), commit=300 for Ext4,
/proc/sys/vm/dirty bytes,
/proc/sys/vm/dirty background byte, TRIM

Select suitable filesystem

has been easy for small capacity, i.e. JFFS2, then attempts
LogFS for MTD, UBI layer and UBIFS, but most of today
media has internal controller – try Samsung F2FS, may it be
that BtrFS COW can be better then Ext4 journal

Use systemd “stateless” setup

Left distribution intact and use RAM/tmpfs overlay setup
and add partition for application persistent data

Pavel Pisa pisa@cmp.felk.cvut.cz CC BY-SA RPi for Industrial and Robotic Applications

pisa@cmp.felk.cvut.cz

Introduction
Root Filesystem Protection
Raspberry Pi and Real-time

SD-card Reliability
GNU/Linux and Root Filesystem
U-Boot on Raspberry Pi

Root Overlay Options

Use and modify initial RAM filesystem (initramfs) to setup
overlay

Solution designed and maintained for diskless boot in
laboratories for more than 10 years at Department of Control
Engineering (persons involved Aleš Kapica, Pavel Ṕı̌sa, Michal
Sojka, past Lukáš Moc)
The setup presented at InstallFest 2011 DiskLess Debian/GNU
Linux at DCE FEL CVUT.cz
The more complete documentation by Aleš Kapica at
https://support.dce.felk.cvut.cz/mediawiki/index.

php/Diskless

Modified/replaced system init command

I.e. append init=/sbin/init-overlay to the kernel
command line and implement required logic in that script
This solution is more limited but much simpler for moderately
experienced users

Pavel Pisa pisa@cmp.felk.cvut.cz CC BY-SA RPi for Industrial and Robotic Applications

http://cmp.felk.cvut.cz/~pisa/linux/diskless_dce_slides.pdf
http://cmp.felk.cvut.cz/~pisa/linux/diskless_dce_slides.pdf
https://support.dce.felk.cvut.cz/mediawiki/index.php/Diskless
https://support.dce.felk.cvut.cz/mediawiki/index.php/Diskless
pisa@cmp.felk.cvut.cz

Introduction
Root Filesystem Protection
Raspberry Pi and Real-time

SD-card Reliability
GNU/Linux and Root Filesystem
U-Boot on Raspberry Pi

Raspberry Pi Boot Process

VideoCore IV GPU loads the first stage bootloader from a
SoC ROM

GPU loads and executes bootcode.bin found on FAT32 or
FAT16 partition on SD-card

Third stage loader start.elf is load and executed by GPU
and loads and parses config.txt file before the ARM core is
initialized (see config.txt documentation at raspberrypi.org
and eLinux.org for detailed description)

This loader loads kernel specified by line of config.txt
which requests kernel.img by defaults

kernel=kernel.img

The memory size and kernel command line found in the file
cmdline.txt are placed to ATAGS parameters structure at
memory address 0x100

Pavel Pisa pisa@cmp.felk.cvut.cz CC BY-SA RPi for Industrial and Robotic Applications

http://www.raspberrypi.org/documentation/configuration/config-txt.md
http://elinux.org/RPiconfig
pisa@cmp.felk.cvut.cz

Introduction
Root Filesystem Protection
Raspberry Pi and Real-time

SD-card Reliability
GNU/Linux and Root Filesystem
U-Boot on Raspberry Pi

Starting the Linux Kernel

Linux kernel is finally started on ARM CPU with register r0 =
0, r1 specifying machine and r2 provides physical address of
passed ATAGS structure or device tree block (dtb) in system
RAM, more at kernel Documentation/arm/Booting

The first SD-card partition has to be FAT and is unsuitable for
GNU/Linux system root. The another partition or device is
formated for suitable filesystem (ext4, btrfs, etc.) and used as
root

For init-overlay, check that root is initially mounted read only
(ro kernel parameter) and append
init=/sbin/init-overlay to cmdline.txt

dwc_otg.lpm_enable=0 console=ttyAMA0,115200

kgdboc=ttyAMA0,115200 root=/dev/mmcblk0p2

rootfstype=ext4 elevator=deadline

rootwait ro init=/sbin/init-overlay

Pavel Pisa pisa@cmp.felk.cvut.cz CC BY-SA RPi for Industrial and Robotic Applications

https://www.kernel.org/doc/Documentation/arm/Booting
pisa@cmp.felk.cvut.cz

Introduction
Root Filesystem Protection
Raspberry Pi and Real-time

SD-card Reliability
GNU/Linux and Root Filesystem
U-Boot on Raspberry Pi

Available Overlay Filesystems

UnionFS (http://unionfs.filesystems.org/)

Aufs3 by Junjiro R. Okajima
(http://aufs.sourceforge.net/)

OverlayFS, now Overlay by Miklos Szeredi (kernel
Documentation/filesystems/overlayfs.txt)

included in mainline form 3.18.0 version
clean implementation but lacks some features
unusable with NFS even as lower/base filesystem for now

Pavel Pisa pisa@cmp.felk.cvut.cz CC BY-SA RPi for Industrial and Robotic Applications

http://unionfs.filesystems.org/
http://aufs.sourceforge.net/
https://www.kernel.org/doc/Documentation/filesystems/overlayfs.txt
https://www.kernel.org/doc/Documentation/filesystems/overlayfs.txt
pisa@cmp.felk.cvut.cz

Introduction
Root Filesystem Protection
Raspberry Pi and Real-time

SD-card Reliability
GNU/Linux and Root Filesystem
U-Boot on Raspberry Pi

Script /sbin/init-overlay

Finds available overlay support (aufs overlay overlayfs unionfs)

Code tests /proc/filesystems and tries to load appropriate
module by modprobe and insmod /lib/modules/$(uname

-r)/extra/x .ko and /lib/modules/$(uname

-r)/kernel/fs/x /x .ko

OVERLAY=x can be specified on kernel command line for
explicit selection

The script requires mount-point /overlay on the root
filesystem and executes

/bin/mount -n -t tmpfs none /overlay

/bin/mkdir -p /overlay/rwdata #ovr_rwdata

/bin/mkdir -p /overlay/robase #ovr_robase

/bin/mkdir -p /overlay/combined #ovr_combined

/bin/mount --bind / /overlay/robase

Pavel Pisa pisa@cmp.felk.cvut.cz CC BY-SA RPi for Industrial and Robotic Applications

pisa@cmp.felk.cvut.cz

Introduction
Root Filesystem Protection
Raspberry Pi and Real-time

SD-card Reliability
GNU/Linux and Root Filesystem
U-Boot on Raspberry Pi

Setup Combined Filesystem

Setup in memory temporary filesystem for changed data

/bin/mount -n -t tmpfs none ${ovr_rwdata}

Setup combined mount for Aufs

/bin/mount -n -t aufs \

-o dirs=${ovr_rwdata}=rw:${ovr_robase}=ro aufs \

${ovr_combined}

or for Overlay

mkdir -p ${ovr_rwdata}/data

mkdir -p ${ovr_rwdata}/work

/bin/mount -n -t overlay -o up-

perdir=${ovr_rwdata}/data,workdir=${ovr_rwdata}/work,\

lowerdir=${ovr_robase} overlay ${ovr_combined}

Pavel Pisa pisa@cmp.felk.cvut.cz CC BY-SA RPi for Industrial and Robotic Applications

pisa@cmp.felk.cvut.cz

Introduction
Root Filesystem Protection
Raspberry Pi and Real-time

SD-card Reliability
GNU/Linux and Root Filesystem
U-Boot on Raspberry Pi

Move Moun-points and Pivot Root

Move mount-points from /overlay tmpfs to
{ovr combined}/overlay to be accessible from running system

/bin/mkdir -p ${ovr_combined}/overlay/rwdata

/bin/mount -n --move ${ovr_rwdata} \

${ovr_combined}/overlay/rwdata

/bin/mkdir -p ${ovr_combined}/overlay/robase

/bin/mount -n --move ${ovr_robase} \

${ovr_combined}/overlay/robase

/bin/mkdir -p ${ovr_combined}/overlay/pivot

chmod 755 ${ovr_combined} # Disable generic rw access

proceed by final root switch

cd ${ovr_combined}

/sbin/pivot_root . overlay/pivot

and then start regular init

exec /usr/sbin/chroot . sbin/init

Pavel Pisa pisa@cmp.felk.cvut.cz CC BY-SA RPi for Industrial and Robotic Applications

pisa@cmp.felk.cvut.cz

Introduction
Root Filesystem Protection
Raspberry Pi and Real-time

SD-card Reliability
GNU/Linux and Root Filesystem
U-Boot on Raspberry Pi

Utility /sbin/overlayctl

Simple utility to automate overlay-init setup and control

status – show actual setting status

overlay is active

overlay enabled for next boot

disable – disable overlay support for following boots
creates $overlay_base/overlay/disable file in the base
root filesystem, it remounts root temporarily read write

enable – reenables overlay by removing disable file

unlock – remounts base filesystem read-write
this allows to do changes in base filesystem, it is even possible
to proceed chroot /overlay/robase and run some
distribution maintenance there (dangerous, does not work
with overlay)

lock – returns to read only base

Pavel Pisa pisa@cmp.felk.cvut.cz CC BY-SA RPi for Industrial and Robotic Applications

pisa@cmp.felk.cvut.cz

Introduction
Root Filesystem Protection
Raspberry Pi and Real-time

SD-card Reliability
GNU/Linux and Root Filesystem
U-Boot on Raspberry Pi

Installation of init-overlay

The utility overlayctl provides commands for easy overlay setup
on standard Raspberry Pi

install – RPi specific setup - appends
init=/sbin/init-overlay to the line in
/boot/cmdline.txt

uninstall – removes init specification from
/boot/cmdline.txt

Pavel Pisa pisa@cmp.felk.cvut.cz CC BY-SA RPi for Industrial and Robotic Applications

pisa@cmp.felk.cvut.cz

Introduction
Root Filesystem Protection
Raspberry Pi and Real-time

SD-card Reliability
GNU/Linux and Root Filesystem
U-Boot on Raspberry Pi

Overlay Remarks

The init-overlay creates fastboot file to bypass
Raspbian/Debian distribution root device and filesystem
consistency check

Check content of /etc/fstab /boot entry to specify
defaults,ro. The default provided fstab mounts FAT /boot

partition read-write (each reboot modifies FAT mount state
which is hazard). Remount /boot read-write before changes
or distribution updates

mount -o remount,rw /dev/mmcblk0p1 /boot

Pavel Pisa pisa@cmp.felk.cvut.cz CC BY-SA RPi for Industrial and Robotic Applications

pisa@cmp.felk.cvut.cz

Introduction
Root Filesystem Protection
Raspberry Pi and Real-time

SD-card Reliability
GNU/Linux and Root Filesystem
U-Boot on Raspberry Pi

Overlay Conclusion

Successfully used by company which ordered support/solution from
PiKRON on Raspberry Pi systems
Solution is even used for regular x86 64 Debian installs at other
FEE department computer laboratories where only single NFS root
is distributed to all stations and local changes are hold in local
RAM/tmpfs.
The complete work is available on GitHub
https://github.com/ppisa/rpi-utils .
The init-overlay directory layout mimic locations in the target
system including basic documentation
/usr/share/doc/init-overlay/init-overlay.txt. The core files are
/sbin/init-overlay and /sbin/overlayctl .

Pavel Pisa pisa@cmp.felk.cvut.cz CC BY-SA RPi for Industrial and Robotic Applications

https://github.com/ppisa/rpi-utils
https://github.com/ppisa/rpi-utils/tree/master/init-overlay
https://github.com/ppisa/rpi-utils/blob/master/init-overlay/usr/share/doc/init-overlay/init-overlay.txt
https://github.com/ppisa/rpi-utils/blob/master/init-overlay/sbin/init-overlay
https://github.com/ppisa/rpi-utils/blob/master/init-overlay/sbin/overlayctl
pisa@cmp.felk.cvut.cz

Introduction
Root Filesystem Protection
Raspberry Pi and Real-time

SD-card Reliability
GNU/Linux and Root Filesystem
U-Boot on Raspberry Pi

Outline

1 Introduction

2 Root Filesystem Protection
SD-card Reliability
GNU/Linux and Root Filesystem
U-Boot on Raspberry Pi

3 Raspberry Pi and Real-time
Fully Preemptive Kernel
DC Motor Control by RPi
Rapid Prototyping with Matlab/Simulink

Pavel Pisa pisa@cmp.felk.cvut.cz CC BY-SA RPi for Industrial and Robotic Applications

pisa@cmp.felk.cvut.cz

Introduction
Root Filesystem Protection
Raspberry Pi and Real-time

SD-card Reliability
GNU/Linux and Root Filesystem
U-Boot on Raspberry Pi

Why U-Boot on Raspberry Pi

Raspberry Pi provides its own configuration loader and parser
but it is quite limited

U-Boot enables to select at startup and script different boot
scenarios

Stephen Warren’s version provides extlinux menu and script
support and not only for local boot but even for PXE, DHCP
and static IP cases

Even kernel can be loaded from network which enables fast
testing during development and no data are lost when NFS
root is used as well when system crashes

U-Boot provides full support for Flattened Device Tree passing
to the kernel (the current official the first+second stage boot
loader adds this support as well)

Pavel Pisa pisa@cmp.felk.cvut.cz CC BY-SA RPi for Industrial and Robotic Applications

pisa@cmp.felk.cvut.cz

Introduction
Root Filesystem Protection
Raspberry Pi and Real-time

SD-card Reliability
GNU/Linux and Root Filesystem
U-Boot on Raspberry Pi

Building U-Boot for Raspberry Pi

Download and build U-Boot

git clone git://github.com/swarren/u-boot.git

cd u-boot

git checkout -b rpi_dev origin/rpi_dev

make rpi_defconfig ARCH=arm CROSS_COMPILE=arm-

rpi-linux-gnueabihf-

make ARCH=arm CROSS_COMPILE=arm-rpi-linux-

gnueabihf-

Copy u-boot.bin to the target system /boot directory (the
first/FAT partition)

Modify /boot/config.txt kernel line

kernel=u-boot.bin

Pavel Pisa pisa@cmp.felk.cvut.cz CC BY-SA RPi for Industrial and Robotic Applications

pisa@cmp.felk.cvut.cz

Introduction
Root Filesystem Protection
Raspberry Pi and Real-time

SD-card Reliability
GNU/Linux and Root Filesystem
U-Boot on Raspberry Pi

U-Boot Basic Commands

printenv - print actual environment variables

savenev - set environment variables

setenv - save environment to be kept over reboot

load - load some file to memory location

boot - restart boot process

sysboot

sysboot ${devtype} ${devnum}:${bootpart}

any ${scriptaddr}

${prefix}extlinux/extlinux.conf

The full documentation at
http://www.denx.de/wiki/DULG/Manual

Pavel Pisa pisa@cmp.felk.cvut.cz CC BY-SA RPi for Industrial and Robotic Applications

http://www.denx.de/wiki/DULG/Manual
pisa@cmp.felk.cvut.cz

Introduction
Root Filesystem Protection
Raspberry Pi and Real-time

SD-card Reliability
GNU/Linux and Root Filesystem
U-Boot on Raspberry Pi

U-Boot Prompt Example

load mmc 0:1 0x00200000 cmdline.txt

md.b 0x00200000 156

setenv bootargs "dwc_otg.lpm_enable=0

console=ttyAMA0,115200 kgdboc=ttyAMA0,115200

root=/dev/mmcblk0p2 rootfstype=ext4

elevator=deadline rootwait ro

init=/sbin/init-overlay"

load mmc 0:1 0x00200000 vmlinuz-3.18.8-rt2+

bootz 0x00200000

Pavel Pisa pisa@cmp.felk.cvut.cz CC BY-SA RPi for Industrial and Robotic Applications

pisa@cmp.felk.cvut.cz

Introduction
Root Filesystem Protection
Raspberry Pi and Real-time

SD-card Reliability
GNU/Linux and Root Filesystem
U-Boot on Raspberry Pi

Extlinux Setup

Files in new directory /boot/extlinux:

bcm2708-rpi-b-plus.dtb – Device Tree
can be obtained from kernel build
arch/arm/boot/dts/bcm2708-rpi-b-plus.dtb

bcm2835-rpi-b-plus.dtb
copy of above because U-Boot uses this name and it name
preferred by Linux mainline

extlinux.conf – menu for kernel/boot selection

vmlinuz-3.18.8-rt2+ – standard Linux zImage kernel format

The configuration is searched on mmc0, usb0, pxe, dhcp devices
and network

Pavel Pisa pisa@cmp.felk.cvut.cz CC BY-SA RPi for Industrial and Robotic Applications

pisa@cmp.felk.cvut.cz

Introduction
Root Filesystem Protection
Raspberry Pi and Real-time

SD-card Reliability
GNU/Linux and Root Filesystem
U-Boot on Raspberry Pi

U-Boot Extlinux Setup

/boot/extlinux/extlinux.conf :

TIMEOUT 100

DEFAULT default

MENU TITLE Boot menu

LABEL default

MENU LABEL Linux 3.18.8-rt2+ with Overlay

LINUX vmlinuz-3.18.8-rt2+

FDTDIR .

APPEND ... console=ttyAMA0,115200

smsc95xx.macaddr=${usbethaddr}

root=/dev/mmcblk0p2

rootfstype=ext4 elevator=deadline

rootwait ro init=/sbin/init-overlay

Pavel Pisa pisa@cmp.felk.cvut.cz CC BY-SA RPi for Industrial and Robotic Applications

pisa@cmp.felk.cvut.cz

Introduction
Root Filesystem Protection
Raspberry Pi and Real-time

Fully Preemptive Kernel
DC Motor Control by RPi
Rapid Prototyping with Matlab/Simulink

Outline

1 Introduction

2 Root Filesystem Protection
SD-card Reliability
GNU/Linux and Root Filesystem
U-Boot on Raspberry Pi

3 Raspberry Pi and Real-time
Fully Preemptive Kernel
DC Motor Control by RPi
Rapid Prototyping with Matlab/Simulink

Pavel Pisa pisa@cmp.felk.cvut.cz CC BY-SA RPi for Industrial and Robotic Applications

pisa@cmp.felk.cvut.cz

Introduction
Root Filesystem Protection
Raspberry Pi and Real-time

Fully Preemptive Kernel
DC Motor Control by RPi
Rapid Prototyping with Matlab/Simulink

RT-Preempt Patch

Realtime is not as fast as possible - realtime is as fast as
specified – Doug Niehaus, Summer 2001

More attempts to run RT task parallel to Linux base on same
CPU (RT-Linux, RTAI) existed. But around 2001 and 2006
KURT/KUPS project tries to make whole kernel real-time.
Work followed by Timesys, Thomas Gleixner, Ingo Molnar and
OSADL.org now.
The main idea behind changing Linux kernel to RTOS is to
use already present support for multiple cores SMP and
provide to system as many virtual CPUs as there are running
threads/task.
Realized by replacement of spin-lock synchronization by RT
mutexes. redefinition of spin lock/spin unlock,
spin lock irqsave/spin unlock irqrestore to use struct
rt mutex instead of atomic variables based lock

Pavel Pisa pisa@cmp.felk.cvut.cz CC BY-SA RPi for Industrial and Robotic Applications

pisa@cmp.felk.cvut.cz

Introduction
Root Filesystem Protection
Raspberry Pi and Real-time

Fully Preemptive Kernel
DC Motor Control by RPi
Rapid Prototyping with Matlab/Simulink

Actual RT State (for RPi)

Open Source Automation Development Lab – long term
testing and Quality Assurance Realtime Farm

Latest available RT-Preempt for 3.18.7 kernel
https:

//www.kernel.org/pub/linux/kernel/projects/rt/

Maximal under about 100 µsec on powerful SMP x86 systems

But what to expect at Raspberry Pi (BCM2708/BCM2835)
Check at OSADL.org QA Farm Realtime rack-b-slot-3

Pavel Pisa pisa@cmp.felk.cvut.cz CC BY-SA RPi for Industrial and Robotic Applications

https://www.kernel.org/pub/linux/kernel/projects/rt/
https://www.kernel.org/pub/linux/kernel/projects/rt/
https://www.osadl.org/Profile-of-system-in-rack-b-slot-3.qa-profile-rbs3.0.html
pisa@cmp.felk.cvut.cz

Introduction
Root Filesystem Protection
Raspberry Pi and Real-time

Fully Preemptive Kernel
DC Motor Control by RPi
Rapid Prototyping with Matlab/Simulink

RPi 3.18.7-rt2 Latency Plot

OSADL.org – OSADL.org QA Farm Realtime – BCM2835 rack-b-slot-3
cyclictest -l50000000 -m -n -a0 -t1 -p99 -i400 -h400 -q

Pavel Pisa pisa@cmp.felk.cvut.cz CC BY-SA RPi for Industrial and Robotic Applications

pisa@cmp.felk.cvut.cz

Introduction
Root Filesystem Protection
Raspberry Pi and Real-time

Fully Preemptive Kernel
DC Motor Control by RPi
Rapid Prototyping with Matlab/Simulink

RPi Latency Long Term 3D

OSADL.org – OSADL.org QA Farm Realtime – BCM2835 rack-b-slot-3
Long term latency trancing for organization members available

Pavel Pisa pisa@cmp.felk.cvut.cz CC BY-SA RPi for Industrial and Robotic Applications

pisa@cmp.felk.cvut.cz

Introduction
Root Filesystem Protection
Raspberry Pi and Real-time

Fully Preemptive Kernel
DC Motor Control by RPi
Rapid Prototyping with Matlab/Simulink

Is It Enough?

The standard control application is motor servo control

Small DC and permanent magnet synchronous motors
mechanical time constant is between 3 and 10 msec (electrical
one can be under 1 msec, but mechanical is prevalent for
control).

System, when controlled for position, is not stable (pure
integrator)⇒controller sampling period should be shorter than
time constant to achieve proper control

Maximal latencies under 200 µsec⇒RPi should be suitable for
such control

Pavel Pisa pisa@cmp.felk.cvut.cz CC BY-SA RPi for Industrial and Robotic Applications

pisa@cmp.felk.cvut.cz

Introduction
Root Filesystem Protection
Raspberry Pi and Real-time

Fully Preemptive Kernel
DC Motor Control by RPi
Rapid Prototyping with Matlab/Simulink

RT Kernel Patches

Official RPi kernel git://github.com/raspberrypi/linux.git
branch rpi-3.18.y
Patches applied

aufs3.18.1+ kbuild patch

aufs3.18.1+ base patch

aufs3.18.1+ mmap patch

aufs3.18.1+ standalone patch

Apply Aufs 3.18-20150305 sources by J. R. Okajima

aufs3.18.1+ module build enabled in RPi default config.

Allow ARMv6/ARM1176 to be selected for ARM Versatile PB.

Apply patch-3.18.7-rt2.patch fully preemptive ker-

nel patch by Sebastian Andrzej Siewior

Provide individual CPU usage measure-

ment based on idle time by Carsten Emde (OSADL)

Save the current patchset in the kernel

Reading /proc/slabinfo may cause large latencies

Add trace latency histogram to monitor context switch time

Workaround to access sysfs cpufreq variables

ARM bcmrpi: add bcmrpi_rt_defconfig .

ovl: do not reject NFS when used as lowerdir (change is inse-

cure, could lead to crash when NFS content is changed).
Pavel Pisa pisa@cmp.felk.cvut.cz CC BY-SA RPi for Industrial and Robotic Applications

git://github.com/raspberrypi/linux.git
pisa@cmp.felk.cvut.cz

Introduction
Root Filesystem Protection
Raspberry Pi and Real-time

Fully Preemptive Kernel
DC Motor Control by RPi
Rapid Prototyping with Matlab/Simulink

RT Kernel Build

Patched kernel available in repository
https://github.com/ppisa/linux-rpi , branch
rpi-3.18.y-aufs-rt-ppisa

The ARMv6 toolchain is required to build kernel.
Unfortunately, arm-linux-gnueabihf- official Debian cross
compiler targets ARMv7 VFPv3-D16. It can be used to build
kernel (controlled by options) but user applications are
miss-compiled and link against bad GLIBC

Custom arm-rpi-linux-gnueabihf- toolchain used for
crosscompile

Kernel build
make ARCH=arm CROSS_COMPILE=arm-rpi-linux-gnueabihf- \

bcmrpi_rt_defconfig

make ARCH=arm CROSS_COMPILE=arm-rpi-linux-gnueabihf-

make ARCH=arm CROSS_COMPILE=arm-rpi-linux-gnueabihf- \

INSTALL_MOD_PATH=$(pwd)/_modules modules_install

Pavel Pisa pisa@cmp.felk.cvut.cz CC BY-SA RPi for Industrial and Robotic Applications

https://github.com/ppisa/linux-rpi
pisa@cmp.felk.cvut.cz

Introduction
Root Filesystem Protection
Raspberry Pi and Real-time

Fully Preemptive Kernel
DC Motor Control by RPi
Rapid Prototyping with Matlab/Simulink

Toolchain RPi ARMv6

Can be downloaded from DCE RTime server. There is
described GCC 4.9.x sources configuration as well.
https:

//rtime.felk.cvut.cz/hw/index.php/Raspberry_Pi

Critical configure options to achieve compatibility with RPi
ARMv6

--with-arch=armv6 \

--with-fpu=vfp \

--with-float=hard \

--enable-multiarch \

--disable-sjlj-exceptions

Pavel Pisa pisa@cmp.felk.cvut.cz CC BY-SA RPi for Industrial and Robotic Applications

https://rtime.felk.cvut.cz/hw/index.php/Raspberry_Pi
https://rtime.felk.cvut.cz/hw/index.php/Raspberry_Pi
pisa@cmp.felk.cvut.cz

Introduction
Root Filesystem Protection
Raspberry Pi and Real-time

Fully Preemptive Kernel
DC Motor Control by RPi
Rapid Prototyping with Matlab/Simulink

Outline

1 Introduction

2 Root Filesystem Protection
SD-card Reliability
GNU/Linux and Root Filesystem
U-Boot on Raspberry Pi

3 Raspberry Pi and Real-time
Fully Preemptive Kernel
DC Motor Control by RPi
Rapid Prototyping with Matlab/Simulink

Pavel Pisa pisa@cmp.felk.cvut.cz CC BY-SA RPi for Industrial and Robotic Applications

pisa@cmp.felk.cvut.cz

Introduction
Root Filesystem Protection
Raspberry Pi and Real-time

Fully Preemptive Kernel
DC Motor Control by RPi
Rapid Prototyping with Matlab/Simulink

System Events Rates

The 1 kHz control loop sampling frequency can be achieved by
RPi

But RPi has no hardware for position (usually quadrature
incremental) sensor interfacing

Incremental encoder output changes frequency can reach MHz
units

For 500 slots wheel and 4000 RPM the required frequency is
about 150 kHz

This is too much for user-space and even proper kernel space
processing on RPi but it is nice experiment for system stability
under load testing

Serious solution requires to extend RPi by incremental
encoder interface implemented in hardware (FPGA)

Pavel Pisa pisa@cmp.felk.cvut.cz CC BY-SA RPi for Industrial and Robotic Applications

pisa@cmp.felk.cvut.cz

Introduction
Root Filesystem Protection
Raspberry Pi and Real-time

Fully Preemptive Kernel
DC Motor Control by RPi
Rapid Prototyping with Matlab/Simulink

GPIO Only Based DC Motor Interfacing

3.3V 1

GPIO2 SDA 3

GPIO3 SCL 5

GPIO4 CLK 7

GND 9

GPIO17 11

GPIO27 13

GPIO22 15

3.3V 17

GPIO10 MOSI 19

GPIO9 MISO 21

GPIO11 SCLK 23

GND 25

2 5V

4 5V

6 GND

8 GPIO14 TX

10 GPIO15 RX

12 GPIO18 PWM

14 GND

16 GPIO23

18 GPIO24

20 GND

22 GPIO25

24 GPIO8 CE0

26 GPIO7 CE1

Raspberry Pi - P1

3.3V UART

1 GND

2 TX

3 3.3V

4 RX

CHB

CHA

IRC

HI DRV

LO DRV

IN

HI DRV

LO DRV

IN

DC
MOTOR

Motor Power Supply

Czech Technical University in Prague
Departemet of Control Engineering FEE
Radek Mečiar and Pavel Píša 2014

RPi Motor Control Interface Prototype

� As simple as possible
� Four NOR gates (SN74HCT02)
� H-bridge (L6203)

Pavel Pisa pisa@cmp.felk.cvut.cz CC BY-SA RPi for Industrial and Robotic Applications

pisa@cmp.felk.cvut.cz

Introduction
Root Filesystem Protection
Raspberry Pi and Real-time

Fully Preemptive Kernel
DC Motor Control by RPi
Rapid Prototyping with Matlab/Simulink

Wire-wrapped Prototype Design

H-bridge (L6203) present on PSR course DC motor kit used

Pavel Pisa pisa@cmp.felk.cvut.cz CC BY-SA RPi for Industrial and Robotic Applications

pisa@cmp.felk.cvut.cz

Introduction
Root Filesystem Protection
Raspberry Pi and Real-time

Fully Preemptive Kernel
DC Motor Control by RPi
Rapid Prototyping with Matlab/Simulink

Software IRC Signals Processing

GPIOs

R
a
sp

b
e
rr

y
 P

i

CHB

CHA

IRC

Hard IRQ

IRQ threaded
handler

Position calculation works better if derived from the order of
IRQs than from the signal values read in the handler.
FIFO run queue preserve order! (Observation from Mečiar
Radek Motor control with Raspberry Pi board and Linux 2014
bachelor thesis)

Pavel Pisa pisa@cmp.felk.cvut.cz CC BY-SA RPi for Industrial and Robotic Applications

https://support.dce.felk.cvut.cz/mediawiki/images/1/10/Bp_2014_meciar_radek.pdf
pisa@cmp.felk.cvut.cz

Introduction
Root Filesystem Protection
Raspberry Pi and Real-time

Fully Preemptive Kernel
DC Motor Control by RPi
Rapid Prototyping with Matlab/Simulink

IRC Kernel Driver

Simple character device /dev/irc0 which counts motor
position

Order of interrupts is converted to increment and
accumulated in the kernel variable

uint32 t (4-bytes) actual value is read from the device

driver source available at GitHub repository
https://github.com/ppisa/rpi-rt-control

The core is a file kernel/modules/rpi gpio irc module.c

Test from user-space

modprobe rpi_gpio_irc_module

hexdump -e ’"%d" ’ /dev/irc0

Pavel Pisa pisa@cmp.felk.cvut.cz CC BY-SA RPi for Industrial and Robotic Applications

https://github.com/ppisa/rpi-rt-control
https://github.com/ppisa/rpi-rt-control/blob/master/kernel/modules/rpi_gpio_irc_module.c
pisa@cmp.felk.cvut.cz

Introduction
Root Filesystem Protection
Raspberry Pi and Real-time

Fully Preemptive Kernel
DC Motor Control by RPi
Rapid Prototyping with Matlab/Simulink

IRC Access from C Code

int irc_dev_fd;

int irc_dev_init(void)

{

irc_dev_fd = open(irc_dev_name, O_RDONLY);

if (irc_dev_fd == -1) {

return -1;

}

return 0;

}

int irc_dev_read(uint32_t *irc_val)

{

if (read(irc_dev_fd, irc_val, sizeof(uint32_t))

!= sizeof(uint32_t)) {

return -1;

}

return 0;

}

Pavel Pisa pisa@cmp.felk.cvut.cz CC BY-SA RPi for Industrial and Robotic Applications

pisa@cmp.felk.cvut.cz

Introduction
Root Filesystem Protection
Raspberry Pi and Real-time

Fully Preemptive Kernel
DC Motor Control by RPi
Rapid Prototyping with Matlab/Simulink

Boost IRC Kernel Threads Priority

The fully preemptive kernel runs even IRQ processing in
thread context, all interrupts use priority 50 by default

modprobe rpi_gpio_irc_module

IRC_PIDS=$(ps Hxa -o command,pid | \

sed -n -e ’s/^\[irq\/[0-9]*-irc[0-9]_ir\][\t]*\([0-

9]*\)$/\1/p’)

for P in $IRC_PIDS ; do

schedtool -F -p 95 $P

done

List threads by real-time priority

ps Hxa --sort rtprio -

o pid,policy,rtprio,state,tname,time,command

Pavel Pisa pisa@cmp.felk.cvut.cz CC BY-SA RPi for Industrial and Robotic Applications

pisa@cmp.felk.cvut.cz

Introduction
Root Filesystem Protection
Raspberry Pi and Real-time

Fully Preemptive Kernel
DC Motor Control by RPi
Rapid Prototyping with Matlab/Simulink

Power Output – PWM

Only single PWM signal generator easily available on
Raspberry Pi

Direction has to be controlled by GPIO pin

GPIO access possible through /sys interface

echo 22 >/sys/class/gpio/export

echo out >/sys/class/gpio/gpio22/direction

cat /sys/class/gpio/gpio22/value

echo 1 >/sys/class/gpio/gpio22/value

But access over /sys represent significant overhead

Direct access from users-pace to GPIO and PWM peripheral
registers is used instead

Pavel Pisa pisa@cmp.felk.cvut.cz CC BY-SA RPi for Industrial and Robotic Applications

pisa@cmp.felk.cvut.cz

Introduction
Root Filesystem Protection
Raspberry Pi and Real-time

Fully Preemptive Kernel
DC Motor Control by RPi
Rapid Prototyping with Matlab/Simulink

Direct GPIO and PWM Registers Access

Implemented in int

rpi_peripheral_registers_map(void) function

The physical address range can be accessed from user-space
by mmap() syscall

mem_fd = open("/dev/mem", O_RDWR|O_SYNC)

gpio_map = mmap(NULL, BLOCK_SIZE, PROT_READ|PROT_WRITE,

MAP_SHARED, mem_fd, GPIO_BASE);

Detailed description at
http://elinux.org/RPi_Low-level_peripherals

Fast GPIO and PWM access functions for controller
application can be found in files rpi gpio.c and rpi bidirpwm.c
found in appl/rpi simple dc servo example of
https://github.com/ppisa/rpi-rt-control repository

Pavel Pisa pisa@cmp.felk.cvut.cz CC BY-SA RPi for Industrial and Robotic Applications

http://elinux.org/RPi_Low-level_peripherals
https://github.com/ppisa/rpi-rt-control/blob/master/appl/rpi_simple_dc_servo/rpi_gpio.c
https://github.com/ppisa/rpi-rt-control/blob/master/appl/rpi_simple_dc_servo/rpi_bidirpwm.c
https://github.com/ppisa/rpi-rt-control
pisa@cmp.felk.cvut.cz

Introduction
Root Filesystem Protection
Raspberry Pi and Real-time

Fully Preemptive Kernel
DC Motor Control by RPi
Rapid Prototyping with Matlab/Simulink

Simple PID Based Speed Controller

Implemented in file rpi simple dc servo.c
Next commands are available setpwm, readirc and runspeed.
The real time task cannot be swapped or code paged in on
demand

mlockall(MCL_FUTURE | MCL_CURRENT)

real time priority has to be used for control task

pthread_attr_t attr;

struct sched_param schparam;

pthread_attr_init(&attr);

pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED);

pthread_attr_setschedpolicy(&attr, SCHED_FIFO);

schparam.sched_priority = sched_get_priority_min(SCHED_FIFO);

pthread_attr_setschedparam(&attr, &schparam);

pthread_create(thread, &attr, start_routine, arg);

pthread_attr_destroy(&attr);
Pavel Pisa pisa@cmp.felk.cvut.cz CC BY-SA RPi for Industrial and Robotic Applications

https://github.com/ppisa/rpi-rt-control/blob/master/appl/rpi_simple_dc_servo/rpi_simple_dc_servo.c
pisa@cmp.felk.cvut.cz

Introduction
Root Filesystem Protection
Raspberry Pi and Real-time

Fully Preemptive Kernel
DC Motor Control by RPi
Rapid Prototyping with Matlab/Simulink

The Controller Timing

The use CLOCK MONOTONIC for all control related timing
is critical, CLOCK REATIME can skip forward and backward
due to user or NTP adjustment

sample_period_nsec = 20*1000*1000;

clock_gettime(CLOCK_MONOTONIC, &sample_period_time);

do {

sample_period_time.tv_nsec += sample_period_nsec;

if (sample_period_time.tv_nsec > 1000*1000*1000) {

sample_period_time.tv_nsec -= 1000*1000*1000;

sample_period_time.tv_sec += 1;

}

clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME,

&sample_period_time, NULL);

/* Run timed actions there */

...

} while(1);

Pavel Pisa pisa@cmp.felk.cvut.cz CC BY-SA RPi for Industrial and Robotic Applications

pisa@cmp.felk.cvut.cz

Introduction
Root Filesystem Protection
Raspberry Pi and Real-time

Fully Preemptive Kernel
DC Motor Control by RPi
Rapid Prototyping with Matlab/Simulink

Ensure Proper Stop When Interrupted

void stop_motor(void)

{

rpi_bidirpwm_set(0);

}

void sig_handler(int sig)

{

stop_motor();

exit(1);

}

...

struct sigaction sigact;

memset(&sigact, 0, sizeof(sigact));

sigact.sa_handler = sig_handler;

sigaction(SIGINT, &sigact, NULL);

sigaction(SIGTERM, &sigact, NULL);

Pavel Pisa pisa@cmp.felk.cvut.cz CC BY-SA RPi for Industrial and Robotic Applications

pisa@cmp.felk.cvut.cz

Introduction
Root Filesystem Protection
Raspberry Pi and Real-time

Fully Preemptive Kernel
DC Motor Control by RPi
Rapid Prototyping with Matlab/Simulink

The Controller Sample Time Step

Please consult application code for complete solution with overflow
and anti-windup protection

err = (pos_req - actual_pos);

ctrl_i_sum += err * ctrl_i;

action = ctrl_p * err + ctrl_i_sum + ctrl_d * (err -

ctrl_err_last); ctrl_err_last = err;

rpi_bidirpwm_set(action >> 8);

More information can at pages of DCE’s Real-Time systems
Programming course http://support.dce.felk.cvut.cz/psr/

and subject’s Semestral Work – Motor Control pages. Other
valuable information on former subject page
https://support.dce.felk.cvut.cz/pos/hlavni_uloha/

Pavel Pisa pisa@cmp.felk.cvut.cz CC BY-SA RPi for Industrial and Robotic Applications

http://support.dce.felk.cvut.cz/psr/
http://support.dce.felk.cvut.cz/psr/cviceni/semestralka/
https://support.dce.felk.cvut.cz/pos/hlavni_uloha/
pisa@cmp.felk.cvut.cz

Introduction
Root Filesystem Protection
Raspberry Pi and Real-time

Fully Preemptive Kernel
DC Motor Control by RPi
Rapid Prototyping with Matlab/Simulink

Test Results

Reliable speed control achieved for smaller speeds
RPi capable to cope with almost full speed of PSR course DC
motor with low resolution IRC sensor
The speed limit is much lower for industry grade motor used
in real PiKRON’s applications
The RPi is capable to process about 28 000 IRQ events per
second but when more arrives the system and controller is
overloaded/blocked and motor runs out of control
But even in overload case system is stable when motor is
externally braked/hold/slow down controller receives CPU
time again and system recovers from overload
Solution is nice for education but not safe for industrial use
The test with FPGA based IRQ processing in in preparation
but even in this case RPi is not considered by us as platform
reasonable for industrial motion control applications

Pavel Pisa pisa@cmp.felk.cvut.cz CC BY-SA RPi for Industrial and Robotic Applications

pisa@cmp.felk.cvut.cz

Introduction
Root Filesystem Protection
Raspberry Pi and Real-time

Fully Preemptive Kernel
DC Motor Control by RPi
Rapid Prototyping with Matlab/Simulink

Outline

1 Introduction

2 Root Filesystem Protection
SD-card Reliability
GNU/Linux and Root Filesystem
U-Boot on Raspberry Pi

3 Raspberry Pi and Real-time
Fully Preemptive Kernel
DC Motor Control by RPi
Rapid Prototyping with Matlab/Simulink

Pavel Pisa pisa@cmp.felk.cvut.cz CC BY-SA RPi for Industrial and Robotic Applications

pisa@cmp.felk.cvut.cz

Introduction
Root Filesystem Protection
Raspberry Pi and Real-time

Fully Preemptive Kernel
DC Motor Control by RPi
Rapid Prototyping with Matlab/Simulink

Embedded Real Time and the DCE Department

CTU FEE Department of Control Engineering has been and is
involved in Matlab/Simulink real-time support from its
beginning (origin of real-time toolbox can be trace to our
department)

We have long term experience with fully preemptive kernel
and hardware interfacing

Embedded Real-time Target has been adapted/partially
rewritten by Michal Sojka to be usable for real applications
(MathWork included embedded solutions are often Windows
only and use POSIX timers and signals which have
uncontrolled latencies during delivery)

The blocks for SocketCAN, Humusoft data acquisition PCI
cards and minimal set of RPi periferals has been implemented

COMEDI blockset has been updated and tested with our
Linux ERT version as well

Pavel Pisa pisa@cmp.felk.cvut.cz CC BY-SA RPi for Industrial and Robotic Applications

pisa@cmp.felk.cvut.cz

Introduction
Root Filesystem Protection
Raspberry Pi and Real-time

Fully Preemptive Kernel
DC Motor Control by RPi
Rapid Prototyping with Matlab/Simulink

RPi DC Motor Control Simulink Diagram

sfIRCInput

IRC0

int32 0

IRC-display

Convert

IRC int32 to Real

double

IRC-scope

-0.01

Manual
PWM

double

sfPWMwDirOutput

PWMwDirManual
PWM

Control

double
 Opt. PSD
 Controller

w
 RSTs
r
red I

u

I
 P

Subsys PSD

double

0

Position
Request

double

0

 RESET

double

Active
Output
Range

double
-K-

Anti
Windup

double

Position

double

Convert

To int

uint8

0.05976

PWM-display

Pos

Trajectory

double

PWM

Pavel Pisa pisa@cmp.felk.cvut.cz CC BY-SA RPi for Industrial and Robotic Applications

pisa@cmp.felk.cvut.cz

Introduction
Root Filesystem Protection
Raspberry Pi and Real-time

Fully Preemptive Kernel
DC Motor Control by RPi
Rapid Prototyping with Matlab/Simulink

RPi DC Motor Control Simulink Prototype

Pavel Pisa pisa@cmp.felk.cvut.cz CC BY-SA RPi for Industrial and Robotic Applications

pisa@cmp.felk.cvut.cz

Introduction
Root Filesystem Protection
Raspberry Pi and Real-time

Fully Preemptive Kernel
DC Motor Control by RPi
Rapid Prototyping with Matlab/Simulink

RPi DC Motor Control Simulink Remarks and Pointers

Incremental encoder input implemented as S-function
sfIRCInput.c which opens /dev/irc0 and reads actual
position from kernel driver
Bidirectional PWM output is implemented in S-function
sfPWMwDirOutput.c and uses same registers direct access
approach as described in the previous section
The whole setup is documented on respective Lintarget/Linux
ERT project page http://lintarget.sourceforge.net/

rpi-motor-control/index.html

used ert linux target and CC=arm-rpi-linux-gnueabihf-gcc set
for make rtw. scp and ssh are used to copy and run binary on
target. Simulink external mode (parameters on-line tune and
signals scope windows) is available.
The generated code performance is the same as for hand
written case – limitation is IRC events processing in the kernel

Pavel Pisa pisa@cmp.felk.cvut.cz CC BY-SA RPi for Industrial and Robotic Applications

https://github.com/ppisa/rpi-rt-control/blob/master/simulink/sfIRCInput.c
https://github.com/ppisa/rpi-rt-control/blob/master/simulink/sfPWMwDirOutput.c
http://lintarget.sourceforge.net/rpi-motor-control/index.html
http://lintarget.sourceforge.net/rpi-motor-control/index.html
pisa@cmp.felk.cvut.cz

Introduction
Root Filesystem Protection
Raspberry Pi and Real-time

Fully Preemptive Kernel
DC Motor Control by RPi
Rapid Prototyping with Matlab/Simulink

SocketCAN Simulink Blockset

The blockset is quick proof port of the CAN Autosar API
based blocks developed at DCE initially for own automotive
grade ARM Cortex-R4 based embedded platform

The code is generated under designed control of TLC (Target
Language Compiler) blocks description which allows to
optimize blocks code for used data-types and interconnection

For more information about embedded systems rapid
prototyping support developed in our group look at
http://rtime.felk.cvut.cz/rpp-tms570/

Notices about more Linux and embedded hardware used,
tested and even some designed look at
https://rtime.felk.cvut.cz/hw/

Pavel Pisa pisa@cmp.felk.cvut.cz CC BY-SA RPi for Industrial and Robotic Applications

http://rtime.felk.cvut.cz/rpp-tms570/
https://rtime.felk.cvut.cz/hw/
pisa@cmp.felk.cvut.cz

Introduction
Root Filesystem Protection
Raspberry Pi and Real-time

Fully Preemptive Kernel
DC Motor Control by RPi
Rapid Prototyping with Matlab/Simulink

Cortex-R4 Automotive Platform and Test Board

Pavel Pisa pisa@cmp.felk.cvut.cz CC BY-SA RPi for Industrial and Robotic Applications

pisa@cmp.felk.cvut.cz

Introduction
Root Filesystem Protection
Raspberry Pi and Real-time

Fully Preemptive Kernel
DC Motor Control by RPi
Rapid Prototyping with Matlab/Simulink

x86 Linux ERT and Parallel Kinematic Robot Control

4 DC motors, 4 incremental encoders, other I/Os

Presented at Embedded world 2014

Sampling period 1 ms but complex computations

More reliable that previously used Windows target

Pavel Pisa pisa@cmp.felk.cvut.cz CC BY-SA RPi for Industrial and Robotic Applications

pisa@cmp.felk.cvut.cz

Introduction
Root Filesystem Protection
Raspberry Pi and Real-time

Fully Preemptive Kernel
DC Motor Control by RPi
Rapid Prototyping with Matlab/Simulink

Conclusion

More ready to be uses open-source building blocks for control
applications have been presented and are available online

We are looking for students who has interest in real-time,
operating systems and control/embedded hardware

We cooperate with more industrial partners on many projects
and students can gain experience and valuable knowledge
during their work on the project in frame of thesis

We offer control related courses Real-Time systems
programming and participate on generic computer
architectures courses at CTU FEE

Thanks for attention and questions

Pavel Pisa pisa@cmp.felk.cvut.cz CC BY-SA RPi for Industrial and Robotic Applications

pisa@cmp.felk.cvut.cz

	Introduction
	Root Filesystem Protection
	SD-card Reliability
	GNU/Linux and Root Filesystem
	U-Boot on Raspberry Pi

	Raspberry Pi and Real-time
	Fully Preemptive Kernel
	DC Motor Control by RPi
	Rapid Prototyping with Matlab/Simulink

